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Abstract 

The importance of student talk in mathematics classrooms figures prominently in curriculum 
and teaching standards. Student talk is a vehicle for increasing student learning and for 
helping teachers monitor student understanding and inform student instructional practices. 
Although researchers have begun to study the moves teachers may make to support students 
in making their mathematical thinking explicit, sharing out with others and using it as the 
basis of conversation, much remains to be known about the teacher practices that help 
students clarify and communicate their mathematical thinking. To learn more about these 
teacher practices, we look closely at what teachers say and do as they engage with their 
students in mathematical conversation and how students participate in relation to what 
teachers say and do. In this report we examine the questions teachers ask and how those 
questions support students to detail their mathematical thinking. Although all teachers in this 
study asked students to explain how they solved problems, an important teacher practice for 
encouraging further student elaboration and giving complete and correct explanations was 
asking further questions about specific aspects of students’ answers or explanations. We 
describe the variety of teacher questioning practices and the differences in patterns of student 
participation that emerged. 

Introduction 

The importance of student talk in mathematics classrooms figures prominently in the 
Professional Standards for Teaching Mathematics (National Council of Teachers of 
Mathematics, [NCTM], 1991). Student talk is described as a major component of classroom 
discourse and as a vehicle for increasing student learning: “Students must talk, with one another 
as well as in response to the teacher …. When students make public conjectures and reason with 
others about mathematics, ideas and knowledge are developed collaboratively, revealing 

                                                
1We would like to thank Pat Shein, Julie Kern Schwerdtfeger, and John Iwanaga for their help in data coding. 
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mathematics as constructed by human beings within an intellectual community” (NCTM, 1991, 
p. 34). Student talk, and how teachers can foster productive talk, appears explicitly or implicitly 
in nearly all of the NCTM standards for teaching mathematics, for example: 

Standard 2, The Teacher’s Role in Discourse, recommends that teachers orchestrate discourse 
by “posing questions and tasks that elicit, engage and challenge each student’s thinking; 
listening carefully to students’ ideas; asking students to clarify and justify their ideas orally 
and in writing; deciding what to pursue in depth from among the ideas that students bring up 
during a discussion; deciding when and how to attach mathematical notation and language to 
students’ ideas; deciding when to provide information, when to clarify an issue, when to 
model, when to lead, and when to let a student struggle with a difficulty; monitoring 
students’ participation in discussions and deciding when and how to encourage each student 
to participate” (NCTM, 1991, p. 35). 

Standard 3, Students’ Role in Discourse, calls for the teacher to promote classroom discourse 
in which “students listen to, respond to, and question the teacher and one another; use of 
variety of tools to reason, make connections, solve problems, and communicate; initiate 
problems and questions; make conjectures and present solutions; explore examples and 
counterexamples to investigate a conjecture; try to convince themselves and one another of 
the validity of particular representations, solutions, conjectures, and answers” (NCTM, 1991, 
p. 45). 

Student talk can lead to increased student mathematical knowledge and understanding in 
two interrelated ways. First, listening to students talk makes it possible for the teachers (and 
other students) to monitor students’ mathematical thinking. Teachers can use information 
gleaned from student talk to inform their instructional decision-making practices, including 
problems to pose and follow-up questions to ask (Franke, Fennema, and Carpenter, 1997). 
Similarly, when students converse with each other, their talk makes it possible for students to 
gauge each other’s strategies and comprehension, providing opportunities for students to help 
each other build more complete mathematical understanding. 

Second, the act of talking can itself help students develop improved understanding. 
Describing, explaining, and justifying one’s thinking all help students internalize principles, 
construct specific inference rules for solving problems, become aware of misunderstandings and 
lack of understanding (Chi, 2000; Chi & Bassock, 1989; Chi, Bassock, Lewis, Reimann, & 
Glaser, 1989; Cooper, 1999), reorganize and clarify material in their own minds, fill in gaps in 
understanding, internalize and acquire new strategies and knowledge, and develop new 
perspectives and understanding (Bargh & Schul, 1980; King, 1992; Peterson, Janicki & Swing, 
1981; Rogoff, 1991; Saxe, Gearhart, Note & Paduano, 1993; Valsiner, 1987; Webb, 1991). 
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In practice, these two mechanisms typically do not occur in isolation but are intertwined. 
When a student talks about how he or she would solve a problem, others (the teacher, other 
students) monitor and evaluate what was said and react with questions, suggestions, challenges, 
or disagreements. These reactions may cause the student to reevaluate his or her thinking and 
prompt the student to voice revised approaches or strategies. Others react to these revisions, and 
so on during the course of the dialogue (Yackel, Cobb, & Wood, 1991). This process of 
negotiating meanings during the course of dialogue, then, reflects a view of mathematics as both 
a social activity and an individual constructive activity (Lave & Wenger, 1991; Rogoff, 1998; 
Schoenfeld, 1989; Scribner, 1992). 

The above description makes it clear that not just any kind of student talk is expected to be 
productive for supporting or challenging students’ thinking. Beyond providing answers, students 
must describe how they would solve problems and why they propose certain strategies and 
approaches. That is, for truly productive dialogue to occur, students must provide evidence of 
both the extent of their procedural knowledge (also instrumental understanding, Skemp, 
1978a,b)— knowledge of “the algorithms, or rules, for completing mathematical tasks” (Hiebert 
& Lefevre, 1986, p. 6), “step-by-step procedures executed in a specific sequence” (Carpenter, 
1986, p. 113), and “action sequences for solving problems” (Rittle-Johnson & Alibali, 1999, p. 
175)—and the extent of their conceptual knowledge (also relational understanding, Skemp 
1978a,b)—understanding of the underlying concepts or principles and the relationships among 
them (Hiebert & Lefevre, 1986; Silver, 1986; Rittle-Johnson & Alibali, 1999). Moreover, when 
describing their thinking, students must be precise and explicit in their talk, especially providing 
enough detail and making referents clear so that the teacher and fellow classmates can 
understand their ideas (Sfard & Kieren, 2001; Nathan & Knuth, 2003). 

Much of the evidence about the effectiveness of giving explanations for learning comes 
from the literature on structured collaborative settings inside or outside the classroom (with 
labels like cooperative learning, collaborative learning, peer-based or peer-directed learning). 
The most consistent finding in this body of research is that providing explanations is positively 
related to achievement outcomes, even when controlling for prior achievement, whereas giving 
only answers is not related or is negatively related to achievement outcomes (Brown & Palincsar, 
1989; L. S. Fuchs, D. Fuchs, Hamlett, Phillips, Karns, & Dutka, 1997; King, 1992; Nattiv, 1994; 
Peterson et al., 1981; Saxe et al., 1993; Slavin, 1987; Webb, 1991; Yackel, Cobb, Wood, 
Wheatley, & Merkel, 1990). 
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Classroom Discourse Practices 

Despite the demonstrated importance of students explaining their thinking, “teacher-
centered instruction continues to dominate elementary and secondary classrooms” (Cuban, 
1993). Kennedy (2004) suggests that, despite numerous reforms, instructional practices remain 
unaltered. In most classrooms students infrequently ask questions (Graesser & Person, 1994) and 
teacher talk typically dominates classroom discourse (Cazden, 2001). Classroom discourse is 
often characterized by forms of instructional discourse described as recitation (Nystrand & 
Gamoran, 1991), Initiation-Response-Evaluation (I-R-E; Turner et al., 2002), or Initiation-
Response-Follow-up (I-R-F; Hicks, 1995-1996; Wells, 1993) in which teachers ask students 
questions and evaluate their responses in a rapid-fire sequence of questions and answers with 
little or no wait time (Black, Harrison, Lee, Marshall, & Wiliam, 2002). Moreover, the vast 
majority of teacher queries consist of short-answer, low-level questions that require students to 
recall facts, rules, and procedures (Ai, 2002; Graesser & Person, 1994), rather than high-level 
questions that require students to draw inferences and synthesize ideas (Hiebert & Wearne, 1993; 
Webb, Nemer, & Ing, 2006; Webb, Ing, Kersting, & Nemer, 2006). Even reform-minded 
teachers often ask questions that require students to do little more than provide correct answers; 
their discourse focuses on procedural knowledge and portrays “doing mathematics as a process 
of memorizing procedures and using these to calculate right answers by plugging in numbers” 
(Spillane & Zeuli, 1999, p. 14, 17). International comparisons also mirror these findings. The 
lack of opportunities in U.S. classrooms for students to discuss connections among mathematical 
ideas and to reason about mathematical concepts constituted one of the most prominent findings 
of the Third International Mathematics and Science Study (Hiebert et al., 2003; Stigler & 
Hiebert, 1999). These descriptions of the level of student participation echo those made two or 
more decades ago (e.g., Cazden, 1986; Doyle, 1985; Gall, 1984; Mehan, 1985). 

There are a number of general principles guiding teacher discourse practices in 
mathematics classrooms. Teachers need to scaffold, monitor, and facilitate discourse around the 
mathematical ideas in ways that support student learning (Kieran & Dreyfus, 1998). Teachers 
need to ask questions, engage students with one another, support students in articulating their 
mathematical thinking and find ways to engage students in comparing ideas or coming to 
consensus. However, as we watch teachers in classrooms, especially those engaged in attempting 
to support conversation, we see how differently these discourse practices play out in classrooms 
and what they mean for student engagement. Teachers ask many kinds of questions in many 
ways, creating different opportunities that are taken up by students in a variety of ways. We 
recognize the necessity of describing the general principles, but we also see the importance of 
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making more explicit the particulars around how teachers can engage students in mathematical 
discourse. 

A number of researchers have begun to make explicit the moves teachers may make to 
support students in making their mathematical thinking explicit, sharing out with others and 
using it as the basis of conversation. For example, Wood (1998) contrasted discourse patterns in 
which teachers’ questioning funneled student responses with discourse patterns in which 
teachers’ questioning focused student mathematical thinking. In the former, the teacher’s 
questions funnel the conversation so that the teacher actually does the bulk of the intellectual 
work. In the latter, the teacher’s questions focus student attention on important mathematical 
ideas but place the responsibility of the intellectual work on students. Sherin (2002) described 
how the teacher can use a “filtering approach” to focus students’ attention on particular 
mathematical ideas. After soliciting multiple solutions from students during which they listened 
and evaluated one another’s ideas, the teacher intentionally filters the ideas, choosing which ones 
to pursue with the whole class in order to advance particular instructional goals. Forman and her 
colleagues investigated the use of revoicing as a pedagogical move to support mathematical 
conversation and help make explicit students’ mathematical thinking (Forman & Ansell, 2002). 
The teacher can use revoicing as a way to align students to a particular argument or way of 
thinking about the mathematics. Studies have found that often revoicing supports the 
development of mathematical ideas (Forman & Ansell, 2002; O’Connor & Michaels, 1993, 
1996; Strom, Kemenya, Lehrer & Forman, 2001). 

Although work like that of Forman and her colleagues, Wood, and Sherin begins to clarify 
the particulars of how teachers can support discourse and student learning, much remains to be 
known about the teacher practices that help students make explicit their mathematical thinking. 
Almost every (if not every) current “reform” approach to the teaching and learning of 
mathematics requires that teachers engage in supporting students to make explicit their 
mathematical thinking. Knowing the general principles helps teachers know how to focus their 
practice but is not enough to help them know how particular aspects of practice matter for 
students. Our hope is to be able to support teachers in their effort by learning more about the 
moves teachers make in helping students make their mathematical thinking explicit and how 
those play out for students and their learning. To do this, we look closely at what teachers say 
and do as they engage with their students in mathematical conversation and how students 
participate in relation to what teachers say and do. 
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This Study 

Our analyses take place within the context of classrooms where teachers had engaged in 
school-based algebraic reasoning professional development. The focus of this professional 
development was on engaging students in algebraic reasoning, specifically ideas about the equal 
sign and number relationships within the context of their teaching practice. Teachers and 
professional development facilitators collaborated on how they could facilitate conversations that 
made students’ algebraic reasoning ideas explicit and pushed on those ideas. Teachers integrated 
algebraic ideas into their practice in a variety of ways, engaging students in both whole-class and 
small-group settings. The ongoing dialogue across the monthly meetings included what teachers 
were trying out in their classrooms and what they could do next to further support algebraic 
reasoning. We videotaped and audio-taped these classrooms to document the details of teacher 
and student interaction around algebraic reasoning. We use this data to look at the relationship 
between what teachers do and how it is taken up within the context of classroom practice and 
particular mathematical work. Our goal is to understand the details of practice that support 
students as they attempt to make their mathematical thinking explicit. 

This report focuses on one aspect of teacher practice related to supporting mathematical 
conversation: the work of supporting students to make their mathematical thinking explicit and 
public. We examine the questions teachers ask and how those support students to detail their 
mathematical thinking. Here we show that much is to be learned from attending to the details of 
teacher practice in relation to students’ participation. We find that although the initial questions 
teachers ask may look the same, how they follow up on those questions can vary tremendously. 
We show that detailed analyses of the relationship between teacher and student participation can 
help us as a field understand the key issues to facilitating classroom discourse and better provide 
support for teachers in their classroom practice. 

This report does not compare different teachers’ practices and relate them to their students’ 
participation. Although it is tempting to provide that type of analysis, our goal here is to begin to 
unpack the teacher participation that is important, to name it, to distinguish it from other similar 
types of moves, and to begin to look at it in relation to student participation. We recognize that 
we are examining only part of teacher practice related to how teachers get student thinking on the 
table in a classroom. We do this to try to provide detail about the practices in relation to student 
thinking and begin to build consensus in the field about the practices. We do not make claims 
about particular practices that all teachers must use. Here we want to show the range of what we 
see teachers doing and how students engage around those practices in these classrooms. Instead 
of making claims about the benefits of particular practices, we are trying to make claims about 
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the type of work we need to do as researchers to better understand mathematical conversations in 
classrooms that support student learning. 

Method 

Building on the large scale study of professional development (Jacobs, Franke, Carpenter, 
Levi, & Battey, 2007), we selected teachers who had been engaged in the work for over a year so 
that we could examine more closely their classroom practice related to algebraic thinking. Here 
we focus on three classrooms and the ways the teachers supported students to share their 
mathematical thinking. We videotaped and audio-taped in these classrooms in ways that allowed 
for a close analyses of the relationship between teacher practice and student participation. 

Sample 

Three elementary school classrooms, the teachers (two second-grade, one third-grade) and 
their students from a large urban school district in Southern California are the focus of this study. 
These classrooms are from schools that serve predominantly African American and Latino 
students and are similar in terms of their academic performance, percentage of students receiving 
free or reduced lunch and percentage of students designated as English language learners 
(California Department of Education, 2006). These teachers were part of a large-scale study 
focused on supporting teachers to engage with students in algebraic thinking (see Carpenter, 
Franke, & Levi, 2003; Jacobs et al., 2007). The teachers participated in at least 1 year of on-site 
professional development and a large-scale study of algebraic thinking professional 
development. 

Prior to the algebraic thinking professional development and the large scale study, the 
district administrators and teachers recognized the value of engaging in algebraic reasoning in 
elementary school, and long-term plans for overall school improvement were underway. The 
district, in its second year of new leadership when the study began, had a history of poor 
performance and a long-standing sense from outside that it would never do well. According to 
the state’s ranking system and standardized test scores, it was one of the lowest performing 
school districts in California. As in many urban school districts, hiring and retaining qualified 
teachers was a struggle. Although the district was making progress, at the beginning of the study, 
only 57% of the teachers in the sample held credentials and 30% of the teachers were in their 
first or second year of teaching. The community served by this district had shifted from being 
predominately African American to being predominately Latino, and at the time of our work, the 
schools served students of whom 99% were minority, 52% were classified as English Language 
Learners, and 93% received free or reduced-cost lunch. 
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Professional Development Program 

Participating teachers engaged in professional development to explore the development of 
students’ algebraic reasoning and, in particular, how that reasoning could support students’ 
understanding of arithmetic. The professional development included both school-based 
workgroup meetings and on-site support. Regular workgroup meetings provided opportunities to 
engage teachers, mathematics coaches, and professional development facilitators in ongoing 
learning and to create a community of learners in which all participants supported one another’s 
learning (for further description see Jacobs et al., 2007). 

The professional development content, drawn from Thinking Mathematically: Integrating 
Arithmetic and Algebra in the Elementary School (Carpenter et al., 2003), highlighted relational 
thinking, including (a) understanding the equal sign as an indicator of a relation; (b) using 
number relations to simplify calculations; and (c) generating, representing, and justifying 
conjectures about fundamental properties of number operations. 

Students’ mathematical thinking served as the focus for our interactions in professional 
development. Our conversations were informed by research on children’s algebraic reasoning. 
We specifically worked to focus teachers’ attention on what their students could do while they 
engaged in algebraic reasoning rather than on what they could not do. Our goal was to help 
teachers create, for themselves, organized ways of understanding and connecting student 
responses. As teachers noticed more solutions over the year, we continued to support them in 
ways that helped them develop notions of themselves as individuals and members of 
communities who could detail solutions, organize knowledge of students’ thinking, and use that 
information to guide instruction (Franke, Carpenter, Levi, & Fennema,, 2001; Franke, Carpenter, 
Fennema, Ansell, & Behrend, 1998). 

The algebraic-reasoning work depended not only on teachers’ encouraging students to 
solve problems in their own ways but also on teachers’ engaging their students in conversations 
to help them explicate their thinking and debate their reasons for thinking as they did. Teachers 
needed to see their students’ participation in these types of mathematical conversations as 
feasible and the conversations as valuable, and they had to learn to lead them. For many teachers, 
thinking about how to both seed and orchestrate conversations was challenging. Within the 
workgroups, then, teachers were able to gain a sense of possibility—a vision for what was 
possible and details of supporting practices. Throughout the year we used true or false number 
sentences and open number sentences as contexts in which teachers could base attempts to seed 
and orchestrate conversations with students (Carpenter et al., 2003; Davis, 1964). We addressed 
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the range of student responses to both particular number sentences and sequences of number 
sentences, and we explored ways to orchestrate discussions around those tasks. 

Procedures 

On two occasions within a 1-week period, we videotaped each teacher’s class using two 
cameras and six audio setups. Each video camera had two audio feeds connected to flat 
microphones (four flat microphones in all), so that four pairs of students could be recorded 
simultaneously. Each flat microphone was positioned between members of a pair. Two pairs 
were audio-taped only. To capture the complete conversation, three microphones were used for 
each pair: an individual lapel microphone for each student and a flat microphone positioned 
between the students in the pair (each attached to a different audio recorder). The recording from 
the flat microphone was the primary source of the conversation in the pair; the recordings from 
the individual microphones were used to identify the speaker and to fill in gaps in the 
conversation. 

Classrooms were taped as teachers taught topics related to equality and relational thinking. 
Teachers were asked to cover those topics but were not directed further about the particular 
problems to present or how to structure instruction. Teachers were also asked to not hesitate to 
have students to talk, to her or to each other. A common practice in these classrooms was 
“pairshare” during which pairs of students worked together to solve and discuss problems 
assigned by the teacher. The structure of the class for all teachers was to introduce a problem, 
ask pairs to work together to solve the problem and share their thinking, and then bring the class 
together for selected students to share their answers and strategies with the whole class (usually 
at the board). 

We captured all teacher-student talk during whole-class portions of the class and individual 
student talk during pairshare for at least 12 of the 20 students in each class. We made 
comprehensive transcripts of each class session consisting of verbatim records of teacher and 
student talk, annotated to include details of their nonverbal participation. We also collected 
student written work, took field notes during class sessions, administered student achievement 
measures (written tests and  individual interviews), and surveyed teachers about their classroom 
practice over the course of the year. 

Classwork Problems 

Teachers were asked to cover equality and relational thinking on the days that we observed 
their classes, topics that were central to the professional development program on algebraic 
thinking. The following are sample problems: (a) 50 + 50 = 25 +  + 50, and (b) 11 + 2 = 5 + 8 
(true or false?). 
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Coding of Student and Teacher Participation 

The coding scheme used to analyze this data highlights the practices teachers used to elicit 
individual student thinking and stimulate mathematical discussion. This scheme to capture 
student and teacher participation is a result of several iterations, growing both from the literature 
about mathematical talk and through our review and discussion of the data. 

Identifying Segments 

Classroom interactions were broken-up into several episodes for analysis. The structure of 
these episodes generally followed this standard format—the teacher posed a problem, students 
discussed the solution within a smaller group composed of two or four students, then the teacher 
led a discussion of the problem with the entire class. We used these natural divisions to segment 
the classroom interaction into whole class and pairshare. In this report we focus only on the 
whole class portion of the classroom interaction. 

Some of the whole-class discussions for a single problem were quite lengthy and several 
students were given a chance to share their thinking. To ensure that we captured the full depth of 
the discussions and maintained coding in context, we further broke the whole-class episodes into 
segments. We defined a segment as an extended interaction or discussion between the teacher 
and an individual student, in which that student had at least two conversational turns. Although 
some of the segments consisted of just two turns, others were longer. The segments began when 
the teacher called on the student and ended either when the teacher called on another student. 
During segments, teachers sometimes directed the discussion toward the whole class instead of 
an individual student. If the teacher returned to the original student after a whole-class choral 
discussion, the segment ended when the interaction with the original student ended. If the teacher 
did not return to the original student after a whole-class choral discussion, the segment ended 
when the interaction with the whole class began. After segments were identified, student and 
teacher participation within each segment were coded. 

Student Participation 

Using transcripts of all class talk (notated to include important nonverbal interaction) and 
videotapes, we coded student participation during whole-class interaction with the teacher for 
each mathematics problem according to these two categories: (a) accuracy of answer given 
(correct, incorrect, or none); and (b) nature of explanation given (correct and complete; 
ambiguous or incomplete; or incorrect)2. 

                                                
2 There were numerous ways students participated in these classrooms which we did not focus on in this report. 
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For each problem, we used dichotomous scoring for the accuracy of the answer given (or 
implied) and the nature of each explanation provided (see Table 1 for examples). Students 
provided different types of correct and complete explanations from computational explanations 
to relational thinking explanations. In this report we focused on whether the explanations 
provided were correct and complete, ambiguous or incomplete, or incorrect. We also coded 
whether students provided additional or further elaboration on their explanation after teachers 
asked questions. 

Our coding scheme allowed for the possibility that the same student might provide multiple 
answers or explanations during a particular segment. For example, a student who provided a 
correct answer and both an incomplete or ambiguous explanation and a correct explanation was 
coded as offering both types of explanations in connection with a correct answer. In this 
scenario, the student might first provide an incorrect explanation and after interacting with the 
teacher, provide further explanation that eventually led to a correct, complete explanation. This 
coding scheme allowed us to determine whether the initial explanation students provided was 
correct, incorrect, incomplete or ambiguous and whether students eventually provided a correct 
and complete explanation after prompting from the teacher. 

Table 1 

Examples of Student Explanations 

Types of explanation Problem and example explanation 

Correct and complete  

 Computational Problem: 20 + 10 = 10 + ? 

Twenty plus ten is thirty, so … The equal sign means that you have to 
be the same, it has to be the same, so if there’s a ten here, then a twenty 
has to be there. Twenty plus ten is thirty, ten plus twenty is thirty. 

 Relational Problem: 11 + 2 = 10 + ? 

’Cause eleven is higher than ten, verdad, is higher than ten, y this one 
[referring to the two], this one’s lower, this one’s [referring to the three 
the student had written in the blank] gotta be higher than this one. 

Ambiguous or incomplete Problem: 100 + ? = 100 + 50 

The fifty will go right there because it has to be the same number. 

Incorrect Problem: 4 + 9 = 5 x 3 – 2 (True or False?) 

I thought it was false because four plus nine is thirteen; and five times 
three is fifteen. Those two do not match. 
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Teacher Participation 

There were numerous strategies teachers used to help make student thinking explicit. For 
example, teachers asked questions, revoiced or repeated student answers or explanations, 
described strategies they thought students used to solve particular problems and highlighted 
mathematical ideas in student explanations. These teacher moves often occurred in various 
combinations and frequencies within particular segments. In this report, we focused on the nature 
of questions teachers asked (see Table 2 for examples) by considering the following types of 
teacher questions: 

1. general questions, 
2. specific questions,  

3. probing sequence of specific questions, 
4. bundles of questions, and  

5. leading questions. 

Teachers asked general questions that were not related to anything specific that a student 
said. Students often provided an answer or some explanation and the teacher asked the student a 
general question to prompt for further explanation or clarification. These types of questions were 
not related to anything specific that a student said. 

If the teacher asked a question about something specific that a student said, this was 
considered a specific question. This differs from the general question because this type of 
question highlights a specific concept or strategy that the student said or wrote on the board. This 
specific question might also be used to direct the student to recognize a certain aspect of the 
problem or to prompt for further explanation or clarification. 

When teachers asked a series of more than two related questions about something specific 
that a student said, this was defined as a probing sequence of specific questions. One purpose of 
this probing sequence of questions might be to clarify or unpack a student’s thinking or 
explanation. A sequence of specific questions implies that there are multiple specific questions in 
a segment. 

There were other types of questions used by teachers to pursue student thinking that were 
not necessarily general or specific. We grouped these questions into “other questions.” This other 
category included teachers asking bundles of questions or leading questions. Bundles of 
questions were instances in which the teacher asked more than two questions and did not provide 
the student any opportunity to answer any of the questions. Leading questions were also a series 
of questions. However, unlike the probing sequence of specific questions or bundles of 
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questions, this series of questions provided opportunities for students to respond by guiding 
students to particular answers or explanations. 

Table 2 

Examples of Teacher Participation 

Type of question Dialogue 

Asks general 
question 

Problem: 375 = ? + (3 * 10) 
Teacher: I’m just a little unsure of how you came up with 345. Can you show me what 
you did? 

 
Asks specific 
question 

Problem: 100 + ? = 100 + 50 

Student: The 50 will go right there because it has to be the same number. 
Teacher: What has to be the same number? 

 
Asks probing 
sequence of 
questions 

Problem: 20 + 10 = 10 + ? 

Student: We didn’t put a 20 in the box. We erased the box. 

Teacher: Okay. 

Student: And then we put a K. 

Teacher: Okay. 

Student: And we knew that 10 equals 10, so then we put 20 plus 20 so K equals 20.  
And then we thought that 20 plus 10 equals 30 and this has to be 30 so we put a 20 
because 20, 20 and 10, 10. So K equals 20. 

Teacher: Okay, I have a question about the K. What does that mean? The K? 

Student: I told (name of student) that I wanted to put a letter. 

Teacher: A letter? Okay. So you could put any letter in there and it wouldn’t matter? 

Student: Yeah. 

Teacher: So I could put the letter C? 

Student: Yeah. 

Teacher: And it would still be 20? 
Student: Yeah. 

 
Asks bundle of 
questions 

Problem: a + b = b + a 
Teacher: What do you mean by B has a partner and A has a partner? Can you come up to 
the board and draw that for us? What do you mean that B has a partner and A has a 
partner? Here. Let’s see. Why don’t you use this one? What does that mean? If you want 
to take any notes on your paper, you may. 

 
Asks leading 
questions 

Problem: a = b + b 

Teacher: What if we add these two numbers together? What’s three hundred plus three 
hundred? 
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Our coding scheme allowed for the possibility that these types of questions occurred in 
combination within the same segment. However, after coding the types of questions that 
occurred within each segment, we characterized the segment into discrete categories. In other 
words, if there were multiple types of questions within the same segment, the segment was 
classified into only one type of question. These discrete categories allowed for a systematic 
analysis framework across all segments and made it possible for us to analyze the question types 
that defined each segment rather than analyzing all possible combinations of questions that 
occurred within particular segments. Our decision rules for this classification are as follows: 

• If the segment included a probing sequence of specific questions, it was classified into 
this category even if there were general question or specific questions that occurred 
within the same segment. 

• If the segment included a general question but not a probing sequence of specific 
questions it was classified into the general question category. 

• If the segment included a specific question but did not include a series of specific 
questions or a general question, it was classified into the specific question category. 

• If the sequence included leading questions that were not specific or general or were not 
a series of specific questions, it was classified into the leading question category. 

• If the sequence includes only a bundle of questions and none of the other types of 
questions, the segment was categorized into the bundle of questions category. 

This decision to characterize the segments into discrete categories for the purpose of these 
analyses allowed for an exploration of the detailed and nuanced ways that teacher questions 
teachers used and how they played out in terms of eliciting student explanations. The results 
section presents the analyses using these discrete teacher questioning coding categories. 

Results 

Description of Teachers’ Questioning Practices 

Teachers’ directives to students to share their thinking. During whole-class instruction, 
teachers frequently directed students to share their thinking. In all segments except one (98%), 
teachers asked the target students to explain their thinking. In 91% of the segments, the teacher 
explicitly prompted an explanation by requesting a student explanation at the outset of the 
segment (73%) or by asking students to explain how they got their answer when they didn’t 
immediately volunteer an explanation (33%). In 76% of segments, the teacher also asked the 
student to elaborate further on the student’s explanation (these teacher practices are described in 
detail in the following sections). Teachers also frequently made remarks reminding students to 
give other students a chance to explain (“Give [Student] a chance [to explain]”), to listen to each 
others’ explanations (“Let’s listen”, “I like the way the people at table two are giving them their 
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full attention”, “I like the way [Student] is paying close attention to what [Students] are about to 
share”), and to understand each others’ thinking (“Let’s understand [Student’s] thinking”). In all 
segments except two (97%), the target student did provide an explanation (or multiple 
explanations). Clearly, in these classrooms, students were expected to give explanations about 
their thinking, and did so. 

Teacher questions to prompt further student explaining. In the remaining sections, we 
analyze the kinds of questions teachers asked to prompt students to clarify or elaborate on their 
explanations. Table 3 summarizes teacher behavior in response to student explanations about 
how they solved the problem. As can be seen in Table 3, teachers asked questions about student 
explanations in the majority of segments (76%). Moreover, they asked an assortment of 
questions, often in combination, including single general or specific questions, probing 
sequences of questions, bundles of questions, and leading questions (see Table 1 for examples), 
with no one type of question predominating. 

Table 3 

Nature of Teacher Questions Following Student Explanations 

Teacher questioning of student explanation Number of segments 

Teacher asked question(s) about student explanation 50 (76%) 

 Probing sequence(s) of specific questions 7 

  And general question(s) 3 

   And specific question(s) 1 

    And leading question(s) 1 

  And specific question(s) 2 

 General question(s) 6 

  And specific question(s) 3 

  And leading question(s) 1 

 Specific question(s) 15 

  And leading question(s) 3 

 Non-probing bundle of questions(s) 2 

 Leading question(s) 6 

Teacher did not ask question(s) about student explanationa  16 (24%) 

Total 66 (100%) 

aTeachers’ responses to student explanations were not coded as questions unless the teachers gave  
the student an opportunity to respond; see coding description in method section. 
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As will be described in detail in later sections, teachers’ questions were posed in response 
to what students said, such as requests for students to clarify ambiguous explanations, questions 
directed toward uncovering the reasoning underlying errors students made, or requests for further 
elaboration of correct problem-solving strategies. Teachers’ questions were clearly not part of a 
premeditated script, such as always responding to a student’s explanation with a generic request 
for repetition or further elaboration. Furthermore, teachers’ questions appeared to be tied to 
multiple and changing goals within interactions, such as trying to understand students’ thinking 
when it was not clearly stated, helping students to understand how to solve a problem in the face 
of misconceptions, or highlighting features of a strategy or mathematical idea for the benefit of 
other students in the class. 

Teacher questioning and students’ initial explanations. We next explored whether 
teachers responded differently depending on the nature of students’ initial explanations. To do 
this, we sorted students’ explanations into two categories according to their accuracy and 
completeness: (a) correct and complete, (b) ambiguous, incomplete, or incorrect. Table 4 shows 
that whether teachers asked any question about a student explanation did not depend much on 
whether the initial explanation was correct and complete or not. Teachers asked about both 
correct and complete explanations and ambiguous, incorrect or incomplete explanations. 
Teachers asked questions about correct explanations in 18 out of 27 cases (67%) and asked 
questions about ambiguous, incorrect or incomplete explanations in 32 out of 39 cases (82%). 

We also explored whether the nature of teachers’ questions depended on whether the initial 
explanation was correct and complete or not. To simplify the presentation of results, because 
some segments had multiple questioning types (see Table 3), we categorized segments into 
discrete groupings according to the predominant teacher questioning type. For the remainder of 
analysis, then we use the following resulting classification: (a) segments with probing sequences 
of specific questions (possibly in conjunction with other questioning types), (b) segments with 
general questions (and other questioning types except probing sequences), (c) segments with 
specific questions (and other questioning types except probing sequences and general questions), 
and (d) segments with other questions (either bundles of unrelated questions, or leading 
questions, but not probing sequences, general questions, or specific questions). As can be seen in 
Table 4, teachers used nearly all questioning types when students’ initial explanations were 
correct and complete as well as when explanations were ambiguous, incorrect, or incomplete. 
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Table 4 

Relationship Between Specific Kinds of Teacher Questioning and Nature of Students’ Initial Explanations  

  Initial student explanation 

Nature of teacher questioning of student 
explanation in the segment 

Number of 
segments 

Correct and 
complete 

Ambiguous, incorrect,  
or incomplete 

Teacher asked question(s) about  
student explanation 

50 18 32 

 Probing sequence of specific questions 14 5 9 

 General questiona 10 3 7 

 Specific questionb 18 9 9 

 Other questionsc 8 1 7 

  Bundle of questions 2 0 2 

  Leading question(s) 6 1 5 

Teacher asked no question about  
student explanation 

16 9 7 

Total 66 27 39 

aSegment does not include probing sequence of specific questions. 
bSegment does not include probing sequence of specific questions or general questions. 
cSegment does include probing sequence of specific questions, single specific or general questions. 

Teacher Questioning and Students’ Explanations.  

The impact of teacher questioning on student behavior—in terms of students elaborating 
further on their explanations, and whether students provided a correct and complete explanation 
of how to solve the problem—varied dramatically from segment to segment in these classrooms. 
Not all questioning resulted in students elaborating their thinking, nor did it always result in 
students providing correct and complete explanations. This section probes the relationship 
between teachers’ questioning practices and students’ explanations of their problem-solving 
strategies. First, we examine whether students elaborated on their explanations during a segment. 
Second, we consider whether students provided a correct and complete explanation during a 
segment. 

Teacher questioning and student elaboration of explanations. Table 5 gives the number 
of segments in which students either did or did not elaborate on their explanation according to 
whether the teacher asked questions about a student’s explanation. As can be seen in Table 5, 
whether students elaborated on their explanations depended greatly on whether teachers asked 
questions about students’ explanations. When teachers did not ask follow-up questions, students 
tended not to provide elaboration. Of the 16 segments with no teacher follow-up questions, none 
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showed student elaboration. When teachers did ask follow-up questions, students were much 
more likely to provide elaboration. Of the 50 segments with teacher follow-up questions, 36 
(72%) yielded student elaboration. This difference is statistically significant χ2(1, N = 66) = 
31.65, p < .001. However, it should also be noted that a sizeable minority of segments in which 
the teacher asked follow-up questions (14, 28%), students provided no elaboration of their 
explanation. This result shows that teacher follow-up questions are not a guarantee of further 
student elaboration of their thinking. A major purpose of the rest of this report is to unpack when 
follow-up questioning leads to further student elaboration and when it does not. 

Table 5 also shows that student elaboration was not restricted only to incorrect or 
incomplete explanations. Students elaborated on correct explanations (e.g., providing additional 
detail) as well as on incorrect, incomplete, or ambiguous explanations. For example, in 14 of the 
36 (39%) segments in which students elaborated on their explanation, students had initially given 
a correct and complete explanation. 

Table 5 

Relationship Between Teacher Questioning and Students’ elaboration on Their Initial Explanations 

 Student elaborated on initial explanation  
Teacher questioning category and 

initial student explanation Number of segments Yes No 

Teacher asked question(s) about 
student explanation 

50 36 14 

 Correct and complete 18 14 4 

 Ambiguous, incomplete, 
incorrect, or no explanation 

32 22 10 

Teacher asked no question about 
student explanation 

16 0 16 

 Correct and complete 9 0 9 

 Ambiguous, incomplete, 
incorrect, or no explanation 

7 0 7 

Total 66 36 30 
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Table 6 

Relationship Between Specific Kinds of Teacher Questioning and Students’ Elaboration of Their Explanations 

Student elaborated on initial explanation  
Nature of teacher questioning  

of student explanation 

 
Number of 
segments Yes No 

Segment included probing sequence of 
specific questions 

14 14 0 

Segment included general question 10 8 2 

Segment included specific question 18 12 6 

Other 8 2 6 

 Bundle of questions 2 0 2 

 Leading questions 6 2 4 

Total 50 36 14 

 

Table 6 gives the number of segments in which students elaborated on their initial 
explanations according to the type of teacher questioning. When teachers asked sequences of 
specific questions (alone or in conjunction with other questioning types), the target students 
provided elaboration of their explanations. When the teacher asked general questions or specific 
questions (but not probing sequences), the target students often provided elaboration of their 
explanation. Other types of teacher questioning (bundles of questions, leading questions) did not 
often lead to students’ elaboration of their explanations. 

Teacher questioning and students’ success in giving correct and complete 
explanations. Table 7 gives the number of segments in which students either did or did not give 
correct and complete explanations according to whether the teacher asked questions about a 
student’s explanation. Our particular focus in this table is whether students who gave initial 
explanations that were not correct succeeded in giving correct and complete explanations later 
during the segment during the context of interaction with the teacher. As can be seen in Table 7, 
although few students succeeded in giving correct, complete explanations after they had 
provided ambiguous, incorrect, or incomplete explanations, whether students succeeded in 
giving a correct and complete explanation after having provided an explanation that was not 
correct or complete depended on whether teachers asked questions about students’ explanations. 
Of the 32 segments with teacher follow-up questions after an initially ambiguous, incorrect, or 
incomplete explanation, 8 (25%) had a correct, complete explanation given by the target 
students. When teachers did not ask students follow-up questions about their ambiguous, 
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incorrect, or incomplete explanations (7 segments), none of the target students in those segments 
produced a correct, complete student explanation χ2(1, N = 39) = 3.59, p = .06.  

Table 7 also shows that the few segments in which target students did provide correct and 
complete explanations after having initially provided explanations that were not correct or 
complete mostly involved probing sequences of teacher questions, and sometimes involved 
general and specific questions. Segments that only involved bundled or leading teacher questions 
did not produce correct and complete explanations on the part of the target student. 

In examining Table 7, we found that in the 31 cases where the target student in the segment 
did not provide a correct and complete explanation, more than half of the time a complete and 
correct explanation was provided by another student, the teacher or the class. In 17 of the 31 
cases a correct and complete explanation was given as a part of the public discourse. For 
example, in the segments with general and specific questions 12 of the 14 segments had 
complete explanations provided by others. When teachers asked leading questions, in contrast, of 
the five segments in which the target student did not give a correct explanation, only one had a 
complete and correct explanation given by someone and in this one case it was the teacher that 
provided the complete explanation. Even when teachers asked no questions three of the seven 
segments in which the target student did not give a correct explanation had complete 
explanations provided by someone else (in two of the cases it was the teacher who provided 
them). In 14 of the 31 cases, no correct and complete explanation was ever provided. In 
summary, in the majority of whole-class segments (79%, 52 of 66), a correct and complete 
explanation was given by the target student in the segment, either initially or in the context of 
teacher-student interaction, or by another student or by the teacher. In only a minority of 
segments (21%) was an ambiguous, incorrect, or incomplete explanation left uncorrected. 
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Table 7 

Relationship Between Specific Kinds of Teacher Follow-up and Accuracy of Students’ Explanations  

   Initial student explanation was not correct 

 
 

Nature of teacher questioning  
of student explanation 

 
Total 

number of 
segments 

 
Initial student 
explanation 
was correct 

Student gave 
correct 

explanation later 
in segment 

Student did not give correct 
explanation, but a correct 

explanation was given by the 
teacher or another student  

 
No correct 
explanation  
was given  

Teacher asked question(s) about student 
explanation 

50 18 8 14 10 

 Segment included probing sequence of 
 specific questions 

14 5 6 1 2 

 Segment included general question 10 3 1 6 0 

 Segment included specific question 18 9 1 6 2 

 Other      

  Bundle of questions 2 0 0 0 2 

  Leading questions 6 1 0 1 4 

Teacher asked no question about student 
explanation 

16 9 0 3 4 

Total 66 27 8 17 14 
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How Teacher Questioning Played Out During Teacher-Student Segments 

The previous sections showed that some teacher questioning practices were more likely 
than others to yield students’ elaboration of their explanations and to lead to students giving 
correct and complete explanations. However, no category of teacher questioning practices 
uniformly produced a certain kind of student participation. For example, two thirds of segments 
with specific questions yielded students’ elaboration of their explanations, but one third of 
segments with specific questions did not. In this section, we examine more closely how and why 
the same kind of teacher questioning produced such different patterns of student participation 
across different segments. 

Probing sequences of specific questions. In all instances the teacher’s use of a sequence 
of specific questions, a probing sequence, was productive in eliciting further elaboration from the 
students and in six of the nine instances in which the initial student response was either incorrect, 
incomplete or ambiguous, the probing sequence resulted in the student articulating a correct and 
complete explanation 

The probing sequence was used in one of three ways across the classrooms. It was used 
when a teacher was unclear about a student’s explanation and was trying to understand the 
student’s thinking. In the following example, the teacher did not understand the student’s use of 
the term “partners” so the teacher asks the student a series of questions to figure out what he or 
she means. 

306. T: Okay, who wants to share out their answers? Who wants to share out? K___?  

307. K___: It doesn’t matter which way you put it… 

308. T: Oops, okay hold on. K___? 

309. K___: It doesn’t matter the way you put it because it still has a partner. 

310. T: Oh! What has a partner? 

311. K___: The numbers. 

312. T: What are you talking about? Could you explain what numbers you are talking 
about? 

313. K___: Two hundred and one. 

314. T: One more time. 

315. K___: Two hundred and one and the one. Two hundred and the one. 
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316. T: Two hundred and the one like this are partners? 

317. K___: The one and the one are partners and the two are partners.  

318. T: Oh, okay, I see what you are saying. So the two hundred and the two hundred are 
partners and the one and this one are partners. Is that what you are saying? So it 
doesn’t matter which way. These ones are still partners. They are the same. These 
two-hundreds are partners. They are the still same. So either way we do it, it’s still 
the same on both sides. True? 

Teachers also used a probing sequence when attempting to highlight, clarify or make 
explicit a particular part of a student’s strategy. The goal seems to have been to highlight or 
make explicit some interesting aspect of the mathematics, seemingly for the benefit of the other 
students. In the following example, the teacher uses a probing sequence of questions to make 
explicit the steps used in this student’s unique solution and to highlight the mathematics. 

768. (44:37) Okay, N__, come on up.. Okay, let’s all pay attention because N__ found a  
couple ways to solve this. You can take your paper up. That’s completely fine. 
Okay. Explain what you did. 

769. N__: I put sixteen take away one equals fifteen, and fifteen plus… 

770. T: Okay, write down what you’re saying. M__, I want you to watch what he’s 
doing cause this will give you another strategy of how to figure out this problem. 
Okay, I have a question for you; where did you get that sixteen from? 

771. N__: I got it from the eight plus eight. 

772. (45:37) T: Okay. Okay, eyes up here please. He had eight plus eight equals fifteen 
plus one, and he says this sixteen is what? 

773. N__: Eight. 

774. T: Eight. Eight plus eight … so he put that here, and then he moved the unknown 
to this side, so he did sixteen minus blank equals fifteen. Do you guys see how he 
did that? Are you allowed to do that? (she rewrites on board: 16 – ___ = 15) 

777. Students: Yes. 

778. T: Are you allowed to move it around like that? 

779. Students: Yes. 

780. T: That’s okay? 
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781. Students: Yes. 

782. T: A__ is saying yes. 

783. Students: Yes. 

784. T: Okay, where did this one come from? What’s this? 

785. N__: Fifteen plus one equals sixteen. 

786. T: So you just… 

787. N__: So I just flipped that around. 

788. T: Can he do that? Can he check his work like that? 

789. Students: Yes. 

Finally, and to a lesser extent, teachers used probing sequences of questions to assist a 
student in understanding a problem. In the following example, the student had an incorrect 
solution and gave an incorrect or incomplete explanation. The teacher used a sequence of 
questions that led the student through the solutions of several related problems. The problems 
were designed to build on each other and illustrate the relevant concepts needed to solve the 
target problem. 

518. T: Who still does not know? K___? Okay, what’s your question? 

519. K___: I don’t know. 

520. T: You don’t know if it’s true? Well then how about this one? Let’s look at another 
one. Let’s go back to our third … I think it was the third one … this one. Would 
you say that that’s true, K___? Or false? 

521. K___: True. 

522. T: Why do you think that that’s true? 

523. K___: Cause A has a partner and one has a partner. 

524. T: A has a partner? 

525. K___: And one has a partner. 

526. T: With what? 

527. K___: With another one. 
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528. T: Okay. 

529. K___: And A has a partner with the other A. 

530. T: Okay, so what if we said A was one thousand. We can call A, any number. So 
then this A has to be … what does that A have to be? 

531. K___: One thousand. 

532. T: It still has to be one thousand, right? So can’t we say from before, K___ … that 
one thousand plus A is the same as one thousand plus fifty? What does A have to 
be? 

533. K___: Fifty. 

534. T: A has to be fifty, right? Why? 

535. K___: Cause fifty is left alone. 

536. T: Fifty is left alone on this side, isn’t it? Okay, so now do you understand? Now 
would you say that this is true? Okay. A has to be fifty and has to have a partner 
like you said before. You guys are doing a great job. And, last one … so … oh, 
okay, we did that. You know what? We are going to take it to a harder one. You 
guys already said … A plus B … Now we are putting in more missing numbers. 
Who thinks that this one is true? (some students raise hands) 

As can be seen by these examples, the probing sequences provided students with multiple 
opportunities to express their thinking and provided teachers with multiple opportunities to hear 
student thinking. Students had an opportunity (through the feedback given by the teacher) to see 
how their explanations were interpreted and used by the teacher. The students then had the 
opportunity to adjust their explanations, by changing their language, highlighting a key idea, or 
clarifying a previously confusing statement. Often times, the teacher’s response gave the students 
cues as to what adjustments were necessary. The interchange between student and teacher also 
provided the teacher to make adjustments, such as rephrasing questions, asking students for 
examples, and developing supplemental problems. 

General question in response to student explanation. As noted earlier (Table 1), teachers 
responded to students’ explanations with general questions in 14 segments. In nine of these 
segments, the general question was the predominant form of teacher questioning. In some cases, 
the teacher asked the student to repeat the explanation either explicitly (“Can you say it one more 
time?”, “What did you say?”) or implicitly (“I’m sorry, what did you do right now?”). In other 
cases, the teacher asked the student to demonstrate further (“Could you come up and show us 
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what you mean?”). In the majority of these segments (7/9, 78%, Table 4), students elaborated on 
their explanations by adding more detail or explaining more clearly. In many of these segments, 
the teacher had already repeated or rephrased part or all of a student’s explanation just prior to 
asking the student to explain again, so the teacher’s question likely signaled that he or she did not 
completely follow or understand the student’s explanation, or that the explanation was 
incomplete, and that further explanation or clarification was needed. 

For example, below is an excerpt from a segment in which the teacher asked the class 
whether the number sentence 1000 + 200 = 200 + 1000 was true and to explain why. The student 
in this segment initially gave a confusing explanation in which the student tried to point out the 
relationship between the numbers on the left side and the right side of the number sentence (line 
1). Her explanation was unclear in part because the student confused thousands and hundreds. 
The teacher started to restate the student’s explanation (line 2), but stopped and asked the student 
to repeat his or her original explanation. Not only did the student add to her initial explanation by 
inserting the language “the same answer” (possibly suggesting that the student may have thought 
that the sum of the numbers on the left side of the number sentence was the same “answer” as the 
sum of the numbers on the right side, line 3), but the student went on to link the numbers to 
variables A and B (lines 5 and 7), in implicit reference to a previous problem A + B = B + A. 

1.  Student: 1000 plus 2000 equals 200 plus 100 because if 100 has 2000 then 2000 needs 
to have a 1000. 

2. Teacher: Okay, so you are also doing the partners. I think you mean, if the 1000, this is 
1000 … Can you say it one more time? 

3. Student: 1000 plus 200 are the same answer from 200 plus 1000 because 100 ... 

4. Teacher: 1000. 

5. Student: 1000 needs to be A and 1000 is A. 

6. Teacher: 1000 is A. 

7. Student: And the other 1000 is A. And 200 is B. 

This example shows a common pattern in which a teacher’s general request for the student 
to explain again was not interpreted literally as a directive to repeat the initial explanation 
verbatim, but was apparently interpreted by the student as a request for further elaboration. 

Specific question in response to student explanation. The specific question was the most 
frequently used question-posing practice to follow up on student explanations. As noted in Table 
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1, of the 50 segments that had follow-up questions, 26 segments had evidence of teachers using 
specific questions to prompt the students to elaborate a particular aspect of their initial 
explanations, clarify ambiguous or incomplete parts of explanations, or consider other important 
elements of the problems (examples below). The specific question was also the most 
predominant practice in 18 segments, where no general questions or sequence of questions were 
asked in conjunction to the specific questions (Table 2). Out of these 18 segments, two thirds of 
students elaborated on initial explanations, and in the other one third of segments, elaboration 
was provided either by the teacher or another student. 

One way teachers used specific questions was to highlight a noteworthy aspect about 
student’s correct and complete strategy. In this example, a student initially gave a complete and 
correct strategy, explaining that the student solved the problem 1000 – 428 = __ by first 
subtracting 1 from 1000 and then adding the 1 back in after subtracting 428 (line 1). The teacher 
asked specifically about why the student subtracted one in order to highlight an “excellent 
strategy” of using this number relation to simplify the otherwise difficult computation of 
“subtracting from zeros” (line 2). Here, when the student did not explain further, the teacher 
posed the same specific question to the class and another student provided further elaboration. 
Although the student is asked “to clarify” by the teacher, the intention behind the questioning is 
to have the student make explicit and public a certain concept or strategy that the teacher deems 
to be important, rather then to simply probe the thinking behind the explanation. 

1. Student: One thousand minus one … One thousand minus one equals nine hundred 
ninety-nine. Nine hundred ninety-nine minus four hundred twenty eight is the same as 
five hundred seventy-one … plus one equals five hundred seventy-two. 

2. Teacher: Okay. Very well done. Now just, you know, to clarify. Why did we subtract 
one from one thousand? And I know that I explained this to you, and I’m just hoping 
some of you remember why this is an excellent strategy to use when we are subtracting 
from zeros. 

Teachers also used specific questions to ask for clarification or elaboration of student’s 
ambiguous or incomplete strategy in order to unpack student’s thinking. Here, the problem posed 
is 100 + ___ = 100 + 50. The student explained that 50 would go inside the box “because it has 
to be the same number” (line 1). The teacher asked a specific question to clarify the ambiguity of 
the student’s initial explanation (line 2), leading to a back-and-forth interaction between the 
teacher and student that yielded further clarification of how the student was considering the 
relationship of the numbers across the equal sign. 
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1. Student: One hundred … no, the fifty will go right there because it has to be the same 
number. 

2. Teacher: What has to be the same number? 

3. Student: One hundred fifty and the other side has to be one hundred fifty too. 

4. Teacher: Okay, so you are adding these together. You said this side has to be one 
hundred fifty? 

5. Student: No. 

6. Teacher: Oh, what were you saying? 

7. Student: That they have to be those because … ’cause it has to have the same numbers. 

8. Teacher: It has to have the same numbers. Okay. 

9. Student: Fifty, fifty and one hundred (student gestures). 

10. Teacher: Okay, this side has a fifty and this side has a fifty. Okay. I see that relation 
going across. 

Teachers also used specific questions to prompt students who had an incorrect answer to 
recognize an aspect of the problem that was not part of the students’ initial explanation. In this 
example, the problem is 4 + 9 = 5 x 3 – 2 (true or false). The student explained: “I thought it was 
false because four plus nine is thirteen, and five times three is fifteen …. Those two do not 
match.” The teacher then asks a specific question (line 1), bringing attention to the part of the 
problem that the student had not included in his or her initial explanation. They discuss that this 
was the first time they had encountered number sentences with more than one operation (lines 6–
7), then the teacher engages with the student and leads him toward a correct and complete 
explanation. 

1. Teacher: Okay, so [Student] said four plus nine is thirteen. Five times three is fifteen. 
That’s not the same number, so it’s false. Okay, I can agree with that. [Student], what 
about the minus two? What did you do with that? 

2. Student: Oh! 

3. Teacher: Did you see the minus two? 

4. Student: I thought because five times three that’ll make it fifteen because five times 
three take away two… 
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5. Teacher: So it doesn’t make sense? Okay, so what could [Student] do? What could be 
the next step for [Student]? 

6. Student: Because I’ve never done three … five times three take away two. 

7. Teacher: This is the first time you’ve done this. Okay, so while we continue on to 
operate the different symbols, we can continue on with the math. So this is our first 
time doing it, right? So now let’s take another look at it. What could you do now, now 
that you know that you can continue? 

Conclusions 

The classrooms from which we draw this data are clearly places where students are making 
their mathematical thinking explicit and public. Students are sharing their answers and strategies, 
and teachers are regularly following up on what a student said or did to get at the student’s 
mathematical thinking. We found that the different approaches teachers used played out 
differently in terms of how they supported students to elaborate their thinking and how they 
moved toward getting a complete and correct explanation on the table. We narrowed the analytic 
focus of this report to examine closely the questions teachers asked to support students to make 
their mathematical thinking explicit and public. 

Previous research examining teacher change found that as teachers engage in professional 
development, their practice shifts to include asking initial questions about how students solved 
problems. Teachers readily ask, “How did you do that?” to elicit student strategies and 
explanations. What teachers find much more difficult is to do something with the students’ 
responses to these initial questions (Franke et al, 2001). Teachers have difficulty figuring out 
how to ask the next set of questions, probe student thinking, and compare student ideas. In the 
classrooms we examined here, however, the teachers were frequently able to follow up on 
students’ initial responses and did so in a range of different ways. At times they probed one 
student in a focused manner over a series of turns. Other times they asked one specific question 
related to something the student had said. Sometimes they asked leading questions, and 
sometimes they did none of these. Our goal in this report was to begin to specify what teachers 
did to move beyond the initial question and help students make their thinking explicit and public. 

Our research shows not only that teachers can and do follow up on students’ initial 
responses, but that they do so in particular ways that relate to what students say and do. 
Additionally, our findings suggest that asking follow-up questions (of various kinds) is necessary 
but not sufficient to insure that students articulate complete and correct strategies. We found that 
it did matter that teachers asked follow-up questions; many times these questions supported 
students in making their thinking more explicit and even added to it in ways that led to a correct 
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and complete strategy being shared. However, we also saw that there were times when asking the 
follow-up questions, almost regardless of type, did not lead to students’ sharing complete 
strategies. It became clear as we looked closely at some of these questioning techniques that 
teachers used them in different ways depending on their goals, the ways in which students 
responded, and how the interaction was situated within the context of the conversation. 

We recognize that the narrow examination of how teachers support students to make their 
mathematical thinking explicit through questioning is only the beginning of what needs to 
happen for a comprehensive understanding of teacher discourse practices. We know and have 
seen a range of other teacher moves that may have also played a role in what happens for 
students. For instance, when asking a specific question, teachers often began by revoicing the 
student’s strategy. Because we can now begin to categorize and characterize some of the types of 
questions teachers use, we can look at the patterns of how these questions unfold in relation to 
other moves teachers make such as revoicing. We see what we have accomplished in this report 
as not only an existence proof of teachers being able to make student thinking explicit but also as 
a methodological argument about the detail necessary to understand the relationship between 
what teachers do and how students take it up. 

We see these findings as consistent with the work of Wood, Sherin and others looking at 
the details of mathematical discourse. Although our findings reflect a more specific look at 
particular types of questions, they show, as do the others, that details matter, that focus matters, 
and that teachers need to choose what to pursue in student thinking and know how to do so. Our 
hope is that as we begin to understand the moves teachers make in relation to what students say 
and do, we can use what we learn to articulate the principled ideas that drive them. For instance, 
as we examined the sequences of probing questions teachers asked a given student, we saw that 
the teacher spent focused time with a single student, followed up on the details of what the 
student said, and highlighted what the teacher considered important about the mathematics 
embedded in the student’s strategy. As we look across patterns of teacher moves, we plan in the 
future to tease out these types of principled ideas so we can help teachers understand how 
particular moves can support or not support students without having to provide a list of practices 
to follow. 

We want to be careful in situating the implications of this work. First, we see there are 
implications both for teachers and for research, but those implications must be understood within 
the context of how we have begun to examine the teacher practices. One cannot take these 
teacher moves, such as asking specific questions, and make any broad claims about their use. It 
is important to note that all we have done here is to begin to detail these practices in relation to 
student participation. We have not looked at the ways in which these practices relate to one 
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another, the patterns within which they occur, and the mathematical ideas embedded within 
them. So, we see the implications for teachers as being that thinking beyond the initial question 
matters. There are a variety of questions one can ask in response to what students say, and 
different ways to support students in explaining their thinking. Planning out the kinds of 
questions teachers might ask and then watching to see how students take them up can help 
teachers fine tune which types of questions work for them and their students. 

We also see that this work has implications for research. Our work shows that close 
attention to what students say and do in relation to what a teacher does and says allows us to 
understand the details of practice that matter for student learning. It becomes imperative to not 
only be able to hear the details of what many students say but also to examine student 
participation in relation to teacher participation and the context of the classroom. This type of 
analysis is difficult as one cannot strip what teachers say from the context in which it happens or 
from how students engage with classroom interaction. Yet, this type of analysis in conjunction 
with a variety of student outcomes can help us understand the ways in which teachers can 
support students’ mathematical understanding through classroom dialogue that supports students 
in explaining their thinking. We recognize that our analyses are only the initial foray into this 
work. We want to look more closely at the relationships among the teacher moves in relation to 
student participation, link this to student outcomes, and understand teachers and their classrooms 
in relation to student participation. 
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